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Definition 2.1-1 Given a random experiment with an outcome space S, a function
X that assigns one and only one real number X (s) = x to each element s in S is
called a random variable.
The space of X is the set of real numbers {x : X (s) = x , s ∈ S}, where s ∈ S
means that the element s belongs to the set S.
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Example 2.1-1 In the experiment of tossing a coin once, we might define the r.v. X
as

X (H) = 1 and X (T ) = 0.

Note that we could also define another r.v., say Y or Z , with

Y (H) = 0, Y (T ) = 1 or Z (H) = 0, Z (T ) = 0.

Example 2.1-2 Consider an experiment in which a person is selected at random
from some population and her height in inches is measured. This height is a random
variable.
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Events defined by random variables

If X is a r.v. and x is a fixed real number, we can define the event (X = x)
as

(X = x) = {s : X (s) = x} .

Similarly, for fixed numbers x , x1,and x2 , we can define the following events:

(X ≤ x) = {s : X (s) ≤ x}
(X > x) = {s : X (s) > x}

(x1 < X ≤ x2) = {s : x1 < X (s) ≤ x2}
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These events have probabilities that are denoted by

P(X = x) = P{s : X (s) = x}
P(X ≤ x) = P{s : X (s) ≤ x}
P(X > x) = P{s : X (s) > x}

P(x1 < X ≤ x2) = P{s : x1 < X (s) ≤ x2}
P(X ∈ C) = P(s : X (s) ∈ C).
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Definition 2.1-2 Let X be a random variable. The distribution of X is the
collection of all probabilities of the form P(X ∈ C) for all sets C of real numbers
such that {X ∈ C} is an event.
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Example 2.1-3 In the experiment of tossing a fair coin three times, the sample
space S, consists of eight equally likely sample points S = {HHH, ...,TTT} . If X
is the r.v. giving the number of heads obtained, find the distribution of X .
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Definition 2.1-3 A random variable X is called discrete if it takes a finite or
countable number (sequence) of values:

X ∈ {x1, x2, x3, ...} .

It is completely described by telling the probability of each outcome. Distribution
defined by:

P(X = xk ) = f (xk ), k = 1, 2, · · ·

is called the probability mass function (p.m.f.) of the discrete r.v.

Definition 2.1-4 The closure of the set {x : f (x) > 0} is called the support of (the
distribution of) X .
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Theorem 2.1-1 (Properties of probability mass function) Let X be a discrete
r.v. It is p.m.f. f (x) = P(X = x) satisfies the following properties:

(a) f (x) ≥ 0, for all x ∈ S;

(b)
∑

x∈S f (x) = 1;

(c) P(X ∈ A) =
∑

x∈A f (x) where A ⊂ S.
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Definition 2.1-5 (Cumulative distribution function) We call the function
defined by

F (x) = P (X ≤ x) , −∞ < x < ∞,

the cumulative distribution function and abbreviate it as cdf .
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Definition 2.1-6 When a pmf is constant on the space or support, we say that the
distribution is uniform over that space.

Example 2.1-4 Let X be a discrete r.v. over a finite number of values
{1, 2, 3, ...,m} with the pmf:

f (x) =
1

m
, x = 1, 2, 3, · · · ,m.

Then X is uniform over {1, 2, 3, ...,m}. Its cdf is given by

F (x) = P(X ≤ x) =



0, x < 1,

k
m
, k ≤ x < k + 1,

1, m ≤ x .

This is a (right-continuous) step function. Draw it...
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Example 2.1-5 Let

f (x) =

{
3
4
( 1
4
)x if x = 0, 1, 2, · · ·

0 otherwise.

(a) Verify that the function f (x) defined by is a pmf of a discrete r.v. X .
(b) Find (i) f (2) = P (X = 2); (ii) P (X ≤ 2); (iii) P (X ≥ 1).
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Example 2.1-6 Let X be the number of accidents per week in a factory. Let the
pmf of X be

f (x) =
1

(x + 1)(x + 2)
, x = 0, 1, 2, · · · .

Find the conditional probability of X ≥ 4, given that X ≥ 1.
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Definition 2.2-1 If f (x) is the p.m.f. of the random variable X of the discrete type
with space S, and if the summation∑

x∈S

u(x)f (x), which is sometimes written
∑

S

u(x)f (x),

exists, then the sum is called the mathematical expectation or the expected value of
the function u(X ), and it is denoted by E[u(X )]. That is,

E[u(X )] =
∑
x∈S

u(x)f (x).
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Remark 2.2-1 The usual definition of mathematical expectation of u(X ) requires
that the sum converge absolutely, that is, that∑

x∈S

|u(x)|f (x)

converge and be finite. The reason for the absolute convergence is that it allows one,
in the advanced proof of ∑

x∈SX

|u(x)|f (x) =
∑

y∈SY

|y |g(y),

to rearrange the order of the terms in the x−summation.
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Example 2.2-1 Let the random variable X have the p.m.f.

f (x) =
1

5
, x ∈ S,

where S = {−2,−1, 0, 1, 2}. Then find (a) E[X ]; (b) E[X 2]; (c) E[X 3].
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Theorem 2.2-1 When it exists, the mathematical expectation E satisfies the
following properties:

(a) If c is a constant, then E(c) = c.

(b) If c is a constant and u is a function, the

E[cu(X )] = cE[u(X )].

(c) If c1 and c2 are constants and u1 and u2 are functions, then

E[c1u1(X ) + c2u2(X )] = c1E[u(X )] + c2E[u2(X )].
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Example 2.2-2 For the pmf given in Example 2.2-1, find (a) E[X (3− 2X )]; (b)
E[3X 2 + 4X 3 − 5].
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Example 2.2-3 Let X have a hypergeometric distribution in which n objects are
selected from N = N1 + N2, that is, the pmf is given by

f (x) = P(X = x) =

(
N1

x

)(
N2

n − x

)
(

N
n

) , x ∈ {0, 1, · · · , n}.

Then find E[X ].
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Example 2.2-4 In the casino game called high-low, there are three possible bets.
Assume that $1 is the size of the bet. A pair of fair six-sided dice is rolled and their
sum is calculated. If you bet low, you win $1 if the sum of the dice is {2, 3, 4, 5, 6}.
If you bet high, you win $1 if the sum of the dice is {8, 9, 10, 11, 12}. If you bet on
{7}, you win $4 if the sum is 7 is rolled. Otherwise, you lose on each of the three
bets. In all three cases, your original dollar is returned if you win. Find the expected
value of the game to the bettor for each of these three bets.
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Exercises from textbook: 2.2-1, 2.2-2, 2.2-4-2.2-7, 2.2-11, 2.2-12
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Definition 2.3-1 The mean (or expected value) of a discrete r.v. X , denoted by µ or
E(X ), is defined by

µ = E(X ) =
∑
x∈S

xf (x).
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Example 2.3-1 Say an experiment has probability of success p, where 0 < p < 1,
and probability of failure q = 1− p. This experiment is repeated independently until
the first success occurs; say this happen on the X trial. Clearly the space of X is
Sx = {1, 2, 3, 4, · · · }.

What is P(X = x), where x ∈ Sx ?

We must observe x − 1 failures and then a success to have this happen. Thus, due the
independence, the probability is

f (x) = P(X = x) = q · q · · · q · p = qx−1p, x ∈ SX .

Since p and q are positive, this is a pmf because

∑
x∈SX

qx−1p =

∞∑
x=0

qx−1p =
p

1− q
=

p
p

= 1.

This distribution is called geometric distribution.
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The mean of this distribution is

µ =
∞∑

x=1

xf (x) = (1)p + (2)qp + (3)q2p + · · ·

and

qµ = (q)p + (2)q2p + (3)q3p + · · · .

If we subtract these second of these two equations from the first, we have

(1− q)µ = p + pq + pq2 + pq3 + · · ·

=
∞∑

x=0

pqx =
p

1− q
= 1.

That is,
µ =

1

1− q
=

1

p
.

For illustration, if p = 1/10, we would expect µ = 10 trials are needed on
average to observe a success. This certainly agrees with out intuition.
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Definition 2.3-2 The r th moment about the origin of a discrete r.v. X is defined by

E(X n) =
∑
x∈S

xnf (x).

Definition 2.3-3 The variance of a discrete r.v. X , denoted by σ2 or Var(X ), is
defined by

σ2 = Var(X ) = E{[X − E(X )]2} =
∑
x∈S

(x − µ)2f (x).

Definition 2.3-4 The standard deviation of a r.v. X , denoted by σ, is the positive
square root of Var(X ), i.e.,

σ =
√

Var(X ).
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Example 2.3-2 Consider a discrete r.v. X whose p.m.f. is given by

f (x) =

{
1
3

if x = −1, 0, 1

0 otherwise.

Find the mean, variance, and standard deviation of X .
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Example 2.3-3 Let a r.v. X denote the outcome of throwing a fair die. Find the
mean and variance of X .
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Example 2.3-4 Find the mean and variance of a r.v. X , which has a uniform
distribution on the first m positive integers.
Hint: Use the formula:

n∑
k=1

k =
n(n + 1)

2
and

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
.
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Definition 2.3-5 The nth moment about the point b is defined as

E[(X − b)n] =
∑
x∈S

(x − b)nf (x).

Remark 2.3-1 Var(X ) is the second moment about the mean µ.
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Definition 2.3-6 The r th factorial moment is defined as

E[(X )r ] = E[X (X − 1)(X − 2) · · · (X − r + 1)]

Remark 2.3-2

σ2 = Var(X ) = E[X (X − 1)] + E(X )− [E(X )]2

= E[(X )2] + µ− µ2.
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Example 2.3-5 Find the variance of of the hypergeometric distribution considered
in Example 2.3-3.

Hint: E(X ) = n
N1

N
and E[X (X − 1)] =

n(n − 1)(N1)(N1 − 1)

N(N − 1)
.
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Definition 2.3-7 Let X be a random variable of the discrete type with pmf f (x) and
space S. If there is a positive number h such that

E(etX ) =
∑
x∈S

etx f (x)

exists and is finite for −h < t < t , then the function defined by

M(t) = E(etX )

is called the moment-generating function of X (or of the distribution of X ). This
function is often abbreviated as mgf.

38



Properties of moment generating function

1. M(0) = 1.

2. If the space of S is {b1, b2, b3, · · · }, then the moment generating
function is given by the expansion

M(t) = etb1 f (b1) + etb2 f (b2) + etb3 f (b3) + · · · .

Thus, the coefficient of etbi is the probability

f (bi) = P(X = bi).

3. If the moment generating function exists, then

M ′(0) = E(X ) = µ

M ′′(0) = E(X 2)

and, in general,
M(r)(0) = E(X r )
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Example 2.3-6 Suppose X has the geometric distribution of Example 2.3-1; that is,
the pmf is

f (x) = qx−1p, x = 1, 2, 3, · · · .

Find mgf of X .
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Example 2.3-7 Define the p.m.f. and give the values of µ, σ2, and σ when the
moment generating function of X is given by (a) M(t) = 1/3 + (2/3)et ; and (b)
M(t) = (0.25 + 0.75et).
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Example 2.3-8 If the moment generating function of X is

M(t) =
2

5
et +

1

5
e2t +

2

5
e3t .

Find the pmf, mean, and variance.
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Example 2.3-9 Suppose the mgf of X is

M(t) =
et/2

1− et/2
, t < ln(2).

Find the pmf, mean, and variance.

Hint: Use (1− z)−1 = 1 + z + z2 + z3 + · · · , −1 < z < 1.
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Exercises from textbook: Section 2.3: 1, 2, 3, 4, 5, 8, 9, 11, 13, 19
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Definition 2.4-1 A r.v. X is called a Bernoulli r.v. with parameter p if its p.m.f. is
given by

f (x) = P(X = x) = px(1− p)1−x , x = 0 or 1,

where 0 ≤ p ≤ 1.
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A Bernoulli r.v. X is associated with some experiment where an outcome
can be classified as either a ”success” or a ”failure,” and the probability of a
success is p and the probability of a failure is q = 1− p. Such experiments
are often called Bernoulli trials.

Theorem 2.4-1 The mean and variance of the Bernoulli r.v. X are

µ = E(X ) = p,

σ2 = Var(X ) = p(1− p).

48



Definition 2.4-2 A r.v. X is called a binomial r.v. with parameters (n, p) if its pmf
is given by

f (x) = P(X = x) =

(
n
x

)
px(1− p)n−x x = 0, 1, 2, · · · , n

where 0 ≤ p ≤ 1 and (
n
x

)
=

n!
x !(n − x)!

,

which is known as the binomial coefficient.
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Remark 2.4-1 Recall that if n is positive integer, then

(a + b)n =

n∑
x=0

(
n
x

)
bx an−x .

Thus, if we use binomial expansion, then sum of the binomial probabilities is

n∑
x=0

(
n
x

)
px(1− p)n−x = [p + (1− p)]n = 1,

a result that had to follow from the fact that f (x) is pmf.
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Remark 2.4-2 A binomial r.v. X is associated with some experiments in which n
independent Bernoulli trials are performed and X represents the number of successes
that occur in the n trials. Note that a Bernoulli r.v. is just a binomial r.v. with
parameters (1, p).
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We now use the binomial expansion to find the mgf for a binomial random
variable and then the mean and variance.

Theorem 2.4-2 Let X ∼ binom(n, p). Then

MX (t) = [(1− p) + pet ]n, −∞ < t < ∞.

Solution. The mgf is given by

MX (t) = E(etX ) =

n∑
x=0

etx

(
n
x

)
px(1− p)n−x

=

n∑
x=0

(
n
x

)
(pet)x(1− p)n−x

= [(1− p) + pet ]n, −∞ < t < ∞,

from the expansion of (a + b)n with a = 1− p and b = pet . �
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Theorem 2.4-3 Let X ∼ binom(n, p). Then

µ = np and σ2 = np(1− p).

Solution. By Theorem 2,

µ = E(X ) = M ′(0) = n[(1− p) + pet ]n−1(pet)

∣∣∣∣
t=0

= np,

σ2 = Var(X ) = E[X 2]− (E [X ])2 = M ′′(0)− [M ′(0)]2 = np(1− p).

�
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Example 2.4-1 A binary source generates digits 1 and 0 randomly with
probabilities 0.6 and 0.4, respectively.
(a) What is the probability that two 1s and three 0s will occur in a five-digit
sequence?
(b) What is the probability that at least three 1s will occur in a five-digit sequence?
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Example 2.4-2 A fair coin is flipped 10 times. Find the probability of the
occurrence of 5 or 6 heads.
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Example 2.4-3 For 0 ≤ p ≤ 1, and n = 2, 3, · · · , determine the value of

n∑
x=2

x(x − 1)

(
n
x

)
px(1− p)n−x .
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Exercises from textbook: Section 2.4: 1, 3, 4, 5, 7abc, 10, 17, 20.
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Consider a collection of N = N1 + N2 similar objects, N1 of them belonging
to one of the two dichotomous classes (red chips, say) and N2 of them
belonging to the second class (blue chips, say).

A collection of n objects is selected from these N objects at random and
without replacement.

Find the probability that exactly x of these n objects belong to the first
class and n − x belong to the second. Clearly, we need

0 ≤ x ≤ N1 and 0 ≤ n − x ≤ N2, (1)

which are equivalent to

max (n − N2, 0) ≤ x ≤ min (n,N1) .
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We can select x objects from the fist class in any one of
(N1

x

)
ways and n − x

objects from the second class in any one of
( N2

n−x

)
ways.

By multiplication principle, the product
(N1

x

)( N2
n−x

)
equals the number of

ways the joint operation can be performed.

If we assume that each of the
(N

n

)
ways of selecting n objects from

N = N1 + N2 objects has the same probability, it follows that the desired
probability is

f (x) = P(X = x) =

(
N1

x

)(
N2

n − x

)
(

N
n

) , max (n − N2, 0) ≤ x ≤ min (n,N1) .

Then we say the random variable X has a hypergeometric distribution with
parameters N1, N2 and n, denoted as HG(N1,N2, n).
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Example 2.5-1 A lot (collection) consisting of 100 fuses is inspected by the
following procedure: Five fuses are chased at random and tested; if all five blow at
the correct amperage, the lot is accepted. Suppose that the lot contains 20 defective
fuses. If X is a random variable equal to the number of defective fuses in the sample
of 5, the probability of accepting is

P(X = 0) =

(
20

0

)(
80

5

)
(
100

5

) = 0.3193.

More generally, the pmf of X is

f (x) = P(X = x) =

(
20

x

)(
80

5− x

)
(
100

5

) , x = 0, 1, 2, 3, 4, 5.
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x 0 1 2 3 4 5

f (x) 149380
378131

933625
2268786

182875
1134393

78375
2646917

2375
934206

38
467103

approx. 0.3951 0.4115 0.1612 0.02961 0.002542 0.00008135

−1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4 HG(20, 80, 5)
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Theorem 2.5-1 Suppose that X follows HG(N1,N2, n). Then

E(X ) = n
(

N1

N

)
and Var(X ) = n

(
N1

N

)(
N2

N

)
.

Remark 2.5-1 Check Examples 2.2-3 and 2.3-5.
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Let the random variable X denote the number of trials needed to observe
the rth success in a sequence of independent Bernoulli trials. That is, X is
the trial number on which the rth success is observed.

By the multiplication rule of probabilities, the pmf of X -say, g(x)- equals
the product of the probability(

x − 1

r − 1

)
pr−1(1− p)x−r =

(
x − 1

r − 1

)
pr−1qx−r

of obtaining exactly r − 1 successes in the first x − 1 trials and the
probability p of success on the rth trial. Thus, the pmf of X is

g(x) =

(
x − 1

r − 1

)
pr (1− p)x−r =

(
x − 1

r − 1

)
pr qx−r , x = r , r + 1, · · · .

We say that X has a negative binomial distribution with parameter (r , p).
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Remark 2.6-1 The reason for calling this distribution the negative binomial
distribution is as follows:

Consider h(w) = (1− w)−r , the binomial (1− w) with the negative exponent −r .
Using Maclaurin’s series expansion, we have

(1− w)−r =
∞∑

k=0

h(k)(0)

k !
wk =

∞∑
k=0

(
r + k − 1

r − 1

)
wk , −1 < w < 1.

If we let x = k + r in the summation, then k = x − r and

(1− w)−r =
∞∑

x=r

(
r + x − r − 1

r − 1

)
wx−r =

∞∑
x=r

(
x − 1

r − 1

)
wx−r ,

the summand of which is, expect for the factor pr , the negative binomial probability
when w = q. In particular, the sum of the probabilities for the negative binomial
distribution is 1 because

∞∑
x=r

g(x) =
∞∑

x=r

(
x − 1

r − 1

)
pr qx−r = pr (1− q)−r = 1.
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The case r = 1

If r = 1 in the negative binomial distribution, we note that X has a
geometric distribution, since the pmf consists of the term of a geometric
series, namely,

g(x) = p(1− p)x , x = 1, 2, 3, · · ·

Remark 2.6-2 Recall that for a geometric, the sum is given by

∞∑
k=0

ar k =
a

1− r
when |r | < 1.

Thus, for the geometric distribution,
∞∑

x=1

g(x) =
∞∑

x=1

(1− p)x−1p =
p

1− (1− p)
= 1,

so that g(x) does satisfy the properties of a pmf.
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From the sum of a geometric series, we also note that when k is an integer,

P(X > k) =
∞∑

x=k+1

(1− p)x−1p =
(1− p)k p
1− (1− p)

= (1− p)k = qk .

Thus, the value of the cdf at a positive integer k is

P(X ≤ k) =
k∑

x=1

(1− p)x−1p = 1− P(X > k) = 1− qk .
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General case r ≥ 1

Theorem 2.6-1 Let X follow a negative binomial distribution with parameters
(r , p). Then

E (X ) =
r
p

and Var(X ) =
rq
p
, where q = 1− p.

This theorem is proved by the following example.
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Example 2.6-1 Show that the moment generating function of negative binomial
random variable X is

M(t) =
(pet)r

[1− (1− p)et ]r
, where t < − ln(1− p).
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Example 2.6-2 Suppose that a sequence of independent tosses are made with a coin
for which the probability of obtaining a head on each given toss is 1/30.
(a) What is the expected number of tosses that will be required in order to obtain five
heads?
(b) What is the variance of the number of tosses that will be required in order to
obtain five heads?
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Remark 2.6-3 Recall that when the moment-generating function exists, derivatives
of all orders exist at t = 0. Thus, it is possible to represent M(t) as a Maclaurin’s
series, namely,

M(t) = M(0) + M
′
(0)

(
t
1!

)
+ M

′′
(0)

(
t2

2!

)
+ M

′′′
(0)

(
t3

3!

)
+ · · ·

Here, M(k)(0) gives the k -th moment.

On the other hand, in many cases, knowing all moments can help us determine the
underlying r.v. or distribution.
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Example 2.6-3 Let E(X r ) = 5r , r = 1, 2, 3, · · · . Find the moment-generating
function M(t) of X and the pmf of X .

75



Example 2.6-4 Consider the experiment of throwing a fair dice.
(a) Find the probability that it will take less than six tosses to throw a 6.
(b) Find the probability that it will take more than six tosses to throw a 6.
(c) Find the average number of rolls required in order to obtain a 6.
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Exercises form textbook: Section 2.6: 1, 2, 3, 4, 6, 7, 8.
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Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type

§ 2.2 Mathematical Expectation

§ 2.3 Special Mathematical Expectation

§ 2.4 The Binomial Distribution

§ 2.5 The Hypergeometric Distribution

§ 2.6 The Negative Binomial Distribution

§ 2.7 The Poisson Distribution
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Definition 2.7-1 Let the number of occurrences of some event in a given
continuous interval be counted. Then we have an approximate Poisson process with
parameter λ > 0 if the following conditions are satisfied:

(a) The numbers of occurrences in non overlapping subintervals are independent.

(b) The probability of exactly one occurrence in a sufficiently short subinterval of
length h is approximately λh.

(c) The probability of two or more occurrences in a sufficiently short subinterval is
essentially zero.

80



Definition 2.7-2 A r.v. X is called a Poisson r.v. with parameter λ(> 0) if its pmf
is given by

f (x) = P(X = x) = e−λ λ
x

x !
, x = 0, 1, 2, 3, · · · .

The corresponding cdf of X is

F (x) = e−λ
n∑

k=0

λk

k !
n ≤ x < n + 1.
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The moment-generating function of Poisson r.v. X is

M(t) = E(etX ) =

∞∑
x=0

etx λ
x e−λ

x !
= e−λ

∞∑
x=0

(λet)x

x !
= e−λeλet

= eλ(et−1),

from which one obtain the mean and variance of the Poisson r.v. X

µ = E(X ) = λ and σ2 = Var(X ) = λ.

Remark 2.7-1 In the case of large n and small p, we have that(
n
k

)
pk (1− p)n−k ≈ e−λ λ

k

k !
np = λ

which indicates that the binomial distribution can be approximated by the Poisson
distribution.
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The Poisson r.v. has a tremendous range of applications in diverse areas
because it may be used as an approximation for binomial r.v. with
parameters (n, p) when n is large and p is small enough so that np is of a
moderate size.

Some examples of Poisson r.v.’s include
1. The number of telephone calls arriving at a switching center during

various intervals of time
2. The number of misprints on a page of a book
3. The number of customers entering a bank during various intervals of

time.
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Example 2.7-1 A noisy transmission channel has a per-digit error probability
p = 0.01.
(a) Calculate the probability of more than one error in 10 received digits.
(b) Repeat (a), using the Poisson approximation.
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Example 2.7-2 The number of telephone calls arriving at a switchboard during any
10−minute period is known to be a Poisson r.v. X with λ = 2.
(a) Find the probability that more than three calls will arrive during any 10-minute
period.
(b) Find the probability that no calls will arrive during any 10−minute period.
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Exercises from textbook: 2.7-1, 2.7-2,2.7-3, 2.7-5,2.7-9, 2.7-11.
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